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The instability of a cylindrical liquid jet encapsulated by a viscous gas in a pipe is 
analysed in a parameter space spanned by the Reynolds number, the Froude 
number, the Weber number, the density ratio, the viscosity ratio, and the diameter 
ratio. A convergent solution of the problem is constructed by a Galerkin projection 
with two orthogonal sets of functions. Two distinctively different modes of instability 
are obtained. The first is the Rayleigh mode which tends to break up the jet into 
drops of diameter comparable with the jet diameter. The amplification rate of the 
disturbance belonging to this mode depends weakly on all parameters except the 
Weber number which represents the ratio of the surface tension force to the inertia 
force at the interface. The mechanism of the instability remains that of capillary 
pinching even in the presence of a viscous gas and gravity. However, the surface 
tension is stabilizing in the other mode termed the Taylor mode. The Taylor mode 
instability is due to the pressure and shear fluctuations at  the interface. This mode 
tends to produce droplets of diameters much smaller than that of the jet. It is shown 
that the former mode appears when the Weber number is much larger than the gas 
to liquid density ratio, When this ratio is of order one, the instability can be due to 
either modes depending on the values of the rest of the parameters. When the density 
ratio is much larger than the Weber number, Taylor’s atomization mode replaces the 
Rayleigh mode. 

1. Introduction 
The instability of an inviscid liquid jet with respect to temporally growing 

disturbances in the absence of gravity and ambient gas was analysed by Rayleigh 
(1879). He showed that the disturbance possessing the maximum amplification rate 
could cause the jet to break up to form droplets comparable in size with the jet 
diameter. Chandrasekhar (1961) showed that the neglected liquid viscosity can only 
reduce the amplification rate of disturbances but cannot suppress the instability 
caused by capillary pinching. The convective and absolute instability of a liquid jet 
was investigated by Keller et al. (1972), Leib & Goldstein (1986a, b ) ,  and Lin & Lian 
(1989). Taylor (1963), Lin & Kang (1987), and Lin & Lian (1990), showed that when 
the gas to liquid density ratio, Q, is much greater than the Weber number, a viscous 
jet of radius R, may actually become unstable with respect to disturbances of 
wavelength h Q R,. Lin & Creighton (1990) found that while the mechanism of 
Rayleigh’s instability is capillary pinching, the mechanism of Taylor’s mode is the 
interfacial pressure fluctuation. However, the effects of the interfacial shear on the 
Rayleigh and the Taylor modes of the jet instability remain unknown, since the gas 
viscosity is neglected in all of the above mentioned theories. The effect of the 
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viscosity of a motionless surrounding fluid on the break-up of a motionless viscous 
cylindrical thread was investigated theoretically by Tomotika ( 1934). The break-up 
mechanism for this case remains capillary pinching. 

Joseph, Renardy & Renardy (1984) investigated the instability of two immiscible 
liquids of the same density but of different viscosities in a pipe. The interfacial 
tension was neglected. The effects of surface tension and density stratification in the 
absence of gravity were later included in the investigations of Preziosi, Chen & 
Joseph (1989) and Hu & Joseph (1989). Smith (1989) investigated the instability of 
two immiscible fluids of the same viscosity but of different densities in a vertical pipe. 
These works are of fundamental importance, because they isolate the effects of the 
density and viscosity discontinuities a t  the interface. However, they cannot be 
applied to elucidate the coupled effects of surface tension, interfacial shear, 
gravitational acceleration and pressure fluctuation on the Rayleigh and the Taylor 
modes of instability. 

A stability theory of a viscous liquid jet surrounded by a viscous gas in a vertical 
pipe in the presence of gravity and interfacial tension is formulated in $2. A 
convergent method of solution by orthogonal expansion is developed in $3. In $4, 
results showing the effects of relevant parameters are presented and discussed in re- 
lation to some known experiments and theories. A perspective of the present work is 
given in the conclusion section. While this paper was being reviewed, Professor 0. M. 
Phillips informed us that another paper on the same subject had been submitted 
to the Journal of Fluid Mechanics by Chen, Bai & Joseph (1990). However, the results 
were reported for a different range of parameters. While our results are relevant to 
the atomization of a liquid jet forced into the ambient gas, their results for forced 
flows do not include the parameter range in which the most amplified waves scale 
with the capillary length which is the ratio of the surface tension to the inertia force 
per unit volume of gas at  the interface. 

2. Formulation of the problem 
Consider the stability of a cylindrical liquid jet of radius R,. The jet is surrounded 

by a viscous gas enclosed in a vertical circular pipe of radius R2 which is concentric 
with the jet. For the jet to maintain a constant radius the pressure gradient in the 
steady liquid- and the gas-flows must remain the same constant. This will allow the 
pressure force difference across the liquid-gas interface to be exactly balanced by the 
surface tension force as required. Such coaxial flows of liquid and gas, in the presence 
of gravity, which satisfy exactly the Navier-Stokes equations are given by 

where 

Re = Reynolds number = p, W, Rl/,ul, 
Fr E Froude number = %/gRl, R = RelFr, 
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FIQURE 1.  Velocity distribution. Q = 0.0013, N = 0.018, 1 = 10. 

where the subscript 1 or 2 stands for the liquid or the gas phase respectively, W, is 
the magnitude of the jet velocity in the z-axis (cf. figure I), r is the radial distance 
normalized with R,, W(r)  is the axial velocity distribution, p is the dynamic viscosity, 
p is density, and g is the gravitational acceleration in the negative z-direction. Some 
velocity distributions in a water jet and in the surrounding air flow under one 
atmosphere are given in figure 1 for various values ofRe/Fr. Note the large difference 
in the slopes of the velocity profiles in the liquid and the gas phases due to the large 
difference in their viscosity, when R is relatively large. 

The stability of the basic state described by (1) with respect to a normal mode 
axisymmetric disturbance is governed by the well-known Orr-Sommerfeld equation 
(Drazin t Reid 1981), 

[ ~ - ( N ' / R e ) D ~ ] D ~ ~ ~ ( r ) + i k W , ( r ) D ~ 4 ~ ( r ) - i i k r d [ d W , ( r ) / r ] ~ ,  = 0 (i = 1,2) ,  (2) 

D2 = d2 - r-' d - k2, d = d/dr, N' = vi/vl ,  

where v is the kinematic viscosity, the subscript i stands for the liquid phase or the 
gas phase depending on if i = 1 or i = 2 ,  w and k are respectively the dimensionless 
complex frequency and the wavenumber of the disturbance, and dt is the amplitude 
of the normal mode disturbance related to the Stokes stream function $t by 

@,(r, z, t )  = q+(r) e(ikr+wt), 

where t is time normalized with RJW,. The Stokes stream function is related 
respectively to the radial and axial components of the disturbance velocity by 

ui = @ i Z I ? - ?  Wt = -$ir/r, 

where the subscripts z and r denote partial differentiations. 
The boundary conditions at the perturbed liquid-gas interface r = 1 +T can be 

linearized by use of the Taylor series expansions of all variables involved about 
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r = 1, and retaining only terms of the first order in perturbations. Hence, the inter- 
facial conditions are to be evaluated at r = 1 with 7 as an additional unknown. Since 
the interface is a material surface, 7 must satisfy at r = 1 the kinematic condition 

%+ K72 = + i Z .  

Other interfacial kinematic conditions are the continuity of the radial and tangential 
components of the velocity across the interface given respectively by 

[&El: = W l Z  - 42zlr-1 = 0, 

[ K r  7 - @irX = 0. 

The balancing of forces per unit area of the interface in the tangential and normal 
directions leads respectively to the dynamic conditions at  r = 1, 

[NdqKrr- (+ir/r)r + @izzIX  = 0, 

[ ~ i - ( 2 / R e ) N ~ ( ~ * z / r ) r I ~  + (7 + ~ z z )  We = 0, 

where pi is the disturbance pressure, 

We = Weber number = Slp, WoR1, Nt = p t / p l ,  

in which S is the surface tension. Thus, We signifies the ratio of surface tension force 
to the inertia force per unit area of the interface. Chandrasekhar’s surface tension 
parameter, J = SRl/pl v:, was used by Preziosi et al. and Lin & Lian (1990). The use 
of this parameter may have the advantage that a small error in measuring Re will not 
be magnified in We. However, one is denied this advantage when one is concerned 
with atomization. The condition for atomization is We 4 Q (cf. Lin & Lian 1990). In 
terms of J ,  this condition is J 4 Re2&. Thus the error made in measuring Re will 
again be magnified by a power of 2 when one delineates the atomization regime in 
J - Re2 Q space. The propagation of an error in experiments cannot be always 
avoided by simply defining a new parameter. The boundary condition at the pipe 
wall is the no-slip condition a t  r = 1, 

+zz = 0, @2r = 0. 

The normal mode axisymmetric pressure disturbance and interfacial displacement 
are written as 

[P t ,  TI = [5&), 51 e(ikz+wt). (3) 

Substituting (3) and the normal mode of +* into the above boundary conditions, 
we rewrite them in the same order of appearance 

(u+ikWl)g-ik#l =0, ( 4 4  

wt1; = 0, (4b) 

[ t % - # i r X  = 0, (44 

[NiB#tI:-(1-Q)Rt = 0, (4d) 

( 4 4  

B = d2-d/r+k2, 

[Ci- (2ik/Be)Nf($tr-#i)I: + E(1 - k 2 )  We = 0, 
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The last term in ( 4 d )  arises from the second derivatives of the basic flows. The 
pressure amplitude discontinuity in (4e) can be obtained from the linearized 
Navier-Stokes equations, and are found to be 

GI; = [Qi{(w+ikW,) 4w-ikWr 4 i 1 - ~ i ( D 2 4 i ) J ~ e 1 ~  (ik)-l (Qi = ~ i / ~ i ) .  

Non-trivial solutions of (1) with its boundary conditions (4a)-(4g) for given flow 
parameters Re, Fr,  We, Q, N ,  1 and k exist only for certain eigenvalues w .  The real part 
of w determines the stability of the flow, and the imaginary part of w determines the 
characteristic frequency of the disturbance. 

3. Solution by orthogonal expansions 
The solution of the problem formulated in the previous section will be expanded 

in an orthogonal set of functions in each of the flow fields in the liquid and in the gas 
(lighter incompressible fluid). The two orthogonal sets are associated with the same 
differential operator in (2), i.e. D2, but with different domain boundaries. By use of 
the change of variable 

$6 = rfa (i = 1,213 

we have Da#, = r(L - k2)f,, 

where L = r - ld ( rd ) -P .  

The orthogonal functions will be chosen among the solutions of the Bessel equation 
of the first order with the parameter k,, 

(L2+kin)qn = 0 (n = 1 ,2 ,  ..., M i ) ,  ( 5 )  

where qn stands for F,(kinr), and Mi is an arbitrary large integer. The bounded 
solutions of ( 5 )  which form an orthogonal set of functions in r < 1 are 

F1n = J i ( k n r ) ,  

k1n 4 ( 4 n ) -  Jl(k1n) = 0. 
where k,, are the roots of 

With these values of kl,, we have 

rFlm Fln = 6gk l 
where #Ak = 0 if m =+ n, if m = n it is given by 

rFZn Fa,,, dr = S g L ,  s: 
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where 8:; = 0 if m = n, otherwise it is given by the integral on the left-hand side of 
the above equation with F,, given by (10). Note that 

F2(k2,Z) = 0. (14) 

We now expand the eigenvector in a truncated series of the above orthogonal 
functions 

r$i = rain&, (i = 1,2) ,  (15) 

where the repeated indices n denote summation over n = 1 to n = M i  (i = 1,2).  The 
number of terms Mi required in the two-flow domains may not be the same for the 
required accuracy. The components of the eigenvector will be obtained by use of the 
Galerkin projection. The following formula which can be derived with integration by 
parts will be used repeatedly in the reduction of the Galerkin projection, 

where g and G are functions of r .  The Galerkin projection of (2) gives 

1; rFt,[(L-k2-Rew’) (L-kz)fi+ik(vl/vi)Re W,(L-k2)fi] dr = 0, (17) 

where w’ = w(u, /v , )  8, = 0, t ,  = s2 = 1, and t ,  = 1. By use of (16), the orthogonality 
conditions, and the following relations 

[ rL( f l )  d(p1m)-rplm ~ ( f 1 ) 1 r = . 9 1  = 0, 

4(kzrn 4 )  = 0, 
we can reduce (17)  to 

eirnnaln-VtlGlr[(~lm)t, ~ - ( C m ) t l P 1  

- % M ( t 2 / S 2 )  ( ~ 2 , ) , z Y + ( ~ 2 m ) 8 2 ~ - ( d ~ 2 m ) s , ~ 1  = 0 ( w n  = 1,2 ,  . . * > J ! f i ) ,  (18) 

where u = (vi/vl) ,  the subscripts in the parentheses denote the values of r at which 
the parenthesized functions are to be evaluated, and 

eemn = 6g~[kz(uk2 +Re w )  + (2vk2 +Re@) k:m + ~ ( k , ,  k,,),] 

+ikRe(k2+k:J rW,F,rnl(ndr-ikcY2i[(l-Q)RRe/N] Fimqnr-ldr,  1 s:: 
01 = “m,, P = [dL(fl)ltl, 

Y = [L(f2)ltZ> 8 = [ W f , ) l S * ,  E = [L(fi)lS,. (19) 

It is known that termwise differentiations of truncated series representations of 
functions do not provide as high an accuracy for the derivatives of functions as for 
functions themselves. For this reason we treat a: to e in (18), which involve 
derivatives higher than second, as five additional unknowns. Thus (18) is a system 
of M, +M, equations in M, +Mz + 5 unknowns. The required additional equations are 
provided by the six boundary conditions (4a)-(4 f )  which contain an additional 
unknown 6. Note that boundary condition (49) is already satisfied, because of (14). 



Instability of a viscous liquid jet surrounded by a viscous gas 647 

Substituting the series solution (15) into (4a )  to (4 f )  we have 

ikF,(k,,) u,,- [o+ikW,(i)][ = 0, 

[a,, &,I: = 0, 

[Ng((k2- 1) 4% + d G  +d2F,JainI;- (1  -&I 6 = 0, 

+Ni[(k2 + k:,) F,, + (3k2 + kin) Win]} ui,]i + ikRe We (1 - k2) = 0, 

(20 a) 

(20 b)  

[ E W r - U i n ( G  +dF,,)I: = 0, (204 

Pod 1 

(2Oe) 

(@,a), a2n = 0. @Of) 

[ { (o+ ik~)ReQ, (F , ,+dF, , ) - ikRe&,  

Equation (18) and the above boundary conditions form a system of (M, +M2 + 6) 
homogeneous linear equations in the same number of unknowns. Making the 
following identifications 

a,, = X ,  (n  = 1, ..., M I ) ,  

a,, = (n = 1, . . . , M 2 ) ,  M = MI +M,, 

( 0 1 9  P, Y, 4 e ,  E )  = (XICI+l, xhf+2> X,+a X M + &  x,+.5, X M + 6 ) ,  

this linear homogeneous system can be written in a standard form 

(A,,+wB,,)X, = 0 (m,n = 1,2,  ..., M + 6 ) ,  

where the elements of matrices A,, and B,, can be identified easily from (18) and 
the above boundary conditions. A non-trivial solution up to an arbitrary 
multiplicative constant of this system exists only if the determinant of its coefficient 
matrix vanishes, i.e. 

(21) [A,, + WB,,I = 0. 

To construct the eigenfunctions of the original system, which is not required in this 
work, we need only the eigenvectors a,, and u2,. The values of a, p, y ,  6, e and 6 are 
not required. The explanation of the numerical computation involved in the solution 
of (21) is in order. All computations are carried out, in double precision with Gould 
PN 9780 a t  Clarkson and the supercomputer facility a t  the Cornell Theory Center. To 
construct the orthogonal functions F,, we solve (7)  and (11)  with (12) respectively for 
k,, and k,, with the Muller (1956) method. All integrals involved, in (18) except Sgb 
which has a closed form expression, are evaluated with the Gauss-Kronrod 
quadrature. For a given set of parameters (Re, We, I+, &, N,  E )  the eigenvalue o is 
obtained from (21) for various values of k with the method by Kaufman (1974). In  
this complex eigenvalue solution, M ,  and M ,  are systematically increased until the 
eigenvalue corresponding to the most amplified or the least damped disturbance 
converges to the desired significant digits. 

4. Results 
Table 1 gives a typical example which demonstrates the convergence of the 

method of determining the eigenvalues for a given set of flow parameters. It is seen 
that as M ,  and M2 are increased respectively from 6 and 64 to 7 and 63, the 
eigenvalues remains the same up to the first four significant digits. Note that when 
M I  = 7 andM, = 63 there are 76 eigenvalues for the given set of parameters. Only the 
one corresponding to the most amplified disturbance is given in the table. The same 
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FIGURE 2. Destabilizing effect of surface tension on the Rayleigh mode. Q = 0.0013, N = 0.018, 
1 = 10, R = 0, Re = 400. 

MI M* 0, w i 
3 15 0.0238 0.7003 
5 35 0.0239 0.7013 
5 45 0.0239 0.7017 
6 54 0.0239 0.7021 
7 63 0.0239 0.7021 

TABLE 1. Convergence to the most amplified mode. k = 0.7, We = 0.0025, Re = 400.0, 
Re/Fr = 0, Q = 0.0013, 1 = 10.0, N = 0.018 

convergence test was carried out for every computation for the most amplified or the 
least damped eigenvalues for various sets of parameters reported in this work. 
Preziosi et al. (1989) used Chebyshev polynomials as base functions for their solution 
of a special case of zero gravity in the present problem. They required 80 terms for 
satisfactory convergent results. Thus the terms required in the present problem with 
gravitational effect is slightly less than that required in their problem of zero gravity. 
A finite element method was used by Hu & Joseph (1989) in their extension of the 
work of Preziosi et al. The finite element method seemed to be more efficient than the 
collocation method. Attempts have been made to test the accuracy and convergence 
by doubling the number of terms in the present problem. It was found that for such 
a large system, the numerical error with a double precision calculation dominates the 
reduced truncation error. 

Figure 1 shows the velocity distribution in the basic state for various values of R 
for the given parameters 1 = 10, N = 0.018, and Q = 0.0013. These values of N and Q 
correspond to a water jet in atmosphere at room temperature. Figure 2 plots the 
growth rates w, against the wavenumber of the disturbance for various values of We 
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FIGURE 3. Effects of N on the Rayleigh mode. Q = 0.0013, I = 10, R = 0, Re = 400, 
We = 0.0025. 

for the set of parameters specified in the figure caption. R = Re/Fr = 0 signifies the 
absence of gravity. It is clearly seen that as We is decreased from 0.01 to lov5 in steps, 
the amplification rates decrease for k < 1 .  For k > 1 the trend is reversed, although 
the growth rates are relatively small. The reversal of the trend can be easily 
understood by looking at  the last term in (4e).  The factor (1 - ka) E in this term arises 
from the curvature of the interface. The g-term is associated with the interfacial 
curvature along a direction perpendicular to the jet axis which gives rise to the 
necking at < 0 and expansion at  6 > 0. The -k26 term is of opposite sign and is 
associated with the curvature in the axial direction. This curvature tends to pull the 
displaced interface back to its basic state position. When k < 1, the former 
destabilizing pinching effect dominates the latter stabilizing effect. When k > 1 the 
role of surface tension is reversed. For the given parameters the jet instability is 
clearly due to the Rayleigh mode of capillary pinching, since the maximum growth 
rate occurs a t  k c 1. As We is decreased further from 0.0001, the wavelengths 
corresponding to the maximum growth rates gradually shift to the region k > 1. This 
is exemplified by the curve for We = in figure 2. Then the instability judged by 
the maximum amplification rate is no longer due to capillary pinching, but due to the 
Taylor mode. This mode will be expounded more clearly later when gravity is taken 
into account. Contrary to the dramatic effect of surface tension on the Rayleigh 
mode, the air viscosity has little effect on this mode, as can be seen in figure 3, except 
when k > 1 where a relatively large gas viscosity tends to destabilize the jet. Figure 
4 shows that an increase in gas density of a hundred-fold can assist the capillary 
pinching only slightly. The range of Q in this figure corresponds to the water jet in 
air of pressure ranging from 1 to 100 atmospheres. Figure 5 shows the effect, of Re on 
the Rayleigh mode. As the viscous force is increased relative to the inertia force in 
the jet, both the wavenumber and the growth rate corresponding to the most 
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FIGURE 4. Effects of Q on the Rayleigh mode. 1 = 10, N = 0.018, R = 0, We = 0.0025, Re = 400. 
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FIGURE 5.  Effects of Re on the Rayleigh mode. I = 10, N = 0.018, Q = 0.0013, R = 0, 
We = 0.0025. -.-, Re = 200; -, Re = 400; ---, Re = 800. 

amplified wave decrease. The same trend was found by Chandrasekhar. Figure 6 
shows the effect ofl. As 1 is decreased, the shear rates in the basic state increase. This 
increase results in a slight increase in the amplification rate for k < 1 where the 
capillary pinching remains the dominant mechanism of instability. The destabilizing 
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FIQURE 6. Effects on the Rayleigh mode. N = 0.018, Q = 0.0013, R = 0, We = 0.0025, Re = 400. 
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FIQURE 7. Comparisons of theories with experiments. -, present wark, We 3 0.0013 ; ---, 
present work, We = 0.0025; - -  -, Rayleigh; A, Goedde & Yuen; 0, Ihnnelly & Glaberson. 
For the present work, Re = 3000, Re/Fr = 0, Q = 0.0013, N = 0.018, I = 10. 

effect of the basic state shear rate is significant for shorter waves for which k: > 1. 
Comparisons between our theoretical results and the experimental results of Goedde 
& Yuen (1970) and that of Donnelly & Glaberson (1966) are made in figure 7 .  
Unfortunately, the values of We and Re corresponding to the experimental points 
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FIGURE 8. Emergence of the Taylor mode. 1 = 10, N = 0.018, Q = 0.0013, We = 0.0025, 
Re = 400. 

0 20 40 60 80 100 
Wavenumber, k, 

FIGURE 9. Effects of We on the Taylor mode. 1 = 10, N = 0.018, Q = 0.0013, R = 0.2, Re = 400. 

were not reported. Two amplification curves were obtained from our theory with the 
parameters corresponding to the lower range of the jet velocity reported by Goedde 
& Yuen. Rayleigh’s amplification curve is also included in this figure for comparison. 
While the slope of Rayleigh’s curve has a discontinuity at ii = 1, the jet is neutrally 



Instability of a viscous liquid jet surrounded by a viscous gas 653 

I N = 0.0018 

-0.1 I I I I I I I 

0 5 10 15 20 25 30 35 
Wavenumber, k, 

FIQURE 10. Effects of N on the Taylor mode. 1 = 10, Q = 0.0013, We = R = 0.2, Re = 400. 

stable for k > 1, our curve is continuous in slope and gives negative o, for k > 1.1. 
The good agreement between the experiments and our curve for Re = 3000 and We = 
0.0013 and Rayleigh’s curve, which is independent of We a t  Re = 00 is probably 
fortuitous. It has already been shown that the amplification curves depend very 
sensitively on We, although less so on other parameters. For a better comparison with 
theories, complete records of all relevant parameters (1, Q, We, Re, N )  for each 
observation of ( w r , u i , k )  are needed. Figure 8 demonstrates the effect of R. The 
wavenumber corresponding to the maximum amplification rate is shifted from the 
region k < 1 to the region k > 1 as R as increased from 0. Moreover, the amplification 
rates for the non-vanishing values of R are orders of magnitude larger than that for 
the Rayleigh jet for which R = 0. Hence the majority of unstable disturbances for 
R =k 0 belong to k > 1, and their instability mechanism, as was explained in 
connection with figure 2, is no longer the capillary pinching. Here, we see the 
emergence of the Taylor mode associated with the interfacial stress fluctuation. 
Figure 9 further demonstrates the stabilizing effect of the interfacial tension. As We 
is decreased to values much smaller than &, both the amplification rates and the 
wavenumber of the unstable spectrum are increased dramatically. It is seen that the 
most unstable disturbances of Taylor’s atomization mode are of wavelength several 
orders of magnitude smaller than the jet radius. Moreover, the wavelengths near the 
maximum growth rates of the amplification curves all scale with the capillary length 
a = 2lcS/p, e R , .  This can be verified by showing that the following equation is 
satisfied with the values of the wavenumber k,, corresponding to the maximum 
growth rate, taken from each curve of figure 10, 

(27cRJk) x a = 2n:S/p, W,R,  = 2nR,( We/&). 

Recall that in the Rayleigh mode, the most amplified waves scale with R ,  in length. 
Contrary to the situation in the Rayleigh mode (cf. figure 3) ,  the air viscosity has a 
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FIGURE 11. Effects of Q on the Taylor mode. I = 10, N = 0.018, We = R = 0.2, Re = 400. 

more significant effect on the atomization mode, as can be seen in figure 10. When 
N is increased from 0.0018 to 0.018 the disturbances for which k < 23 are damped 
while the disturbances for which k > 23 are amplified. This seems to reflect the fact 
that the enhancement of the amplification rate owing to  the relative increase in gas 
viscosity more than compensates for the decrease in the damping rate owing to the 
relative decrease in the liquid viscosity for shorter waves such that k > 23. The 
reverse is true for longer waves for which k < 23. This also reveals the crucial roles 
played by the gas shear stress in the generation of small droplets. Neglecting the gas 
viscosity, Lin & Kang (1987), and Lin & Creighton (1990) showed that only pressure 
fluctuation can generate short waves scaling with capillary length. It is clear now 
that the interfacial shear and pressure fluctuations are equally capable of generating 
short waves scaling with the capillary length. This view is further substantiated by 
figures 11 and 12 which show qualitatively the same behaviour as figure 10, when the 
ratio of inertia force relative to viscous force is raised respectively by raising the 
value of Q and Re, Figure 13 shows the destabilizing effect of the basic state shear 
rate on the Taylor mode. A large basic state shear rate at the interface requires a 
large shear stress fluctuation when the interface fluctuates from the unperturbed 
cylindrical surface, in order to satisfy the condition of vanishing shear force a t  the 
interface (cf. Hinch 1084; Kelly et al. 1989). This large shear-stress fluctuation 
inevitably brings about a large pressure fluctuation, and causes the growth rate to 
increase. I n  contrast to  the situation in figure 6, the radius ratio 1 has a very 
significant effect on the Taylor mode (figure 14). A decrease in 1 brings about a larger 
basic state shear rate which again results in an increase in the growth rate. Unlike 
the case of Q = 1,  We = 0, and N < 1 investigated by Joseph et al., we did not find 
stability near k = 0 when 1+ 1 for finite values of We and Q < 1. However, when we 
put We = 0, Q = 1, N = 0.5, R = 0 and Re = 27.2 we did find that the jet is stable for 
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6 < k and k < 0.7. This is consistent with the results of Joseph et al. (1984). Hooper 
& Boyd (1987) and Renardy (1985) also found a similar stable region for planar 
Couette flow of two superposed fluids of different viscosities but of the same density. 

5. Discussion 
It should be pointed out that the instability waves near k = 0 in the present work 

are not of the type of Yih (1967), since Yih’s long shear waves are not apparent when 
N < 1 (cf. Hooper & Boyd 1987). The stability analysis of a viscous liquid jet in an 
ambient gas reveals that there are two distinct mechanisms of the jet break-up. The 
first is that of the Rayleigh mode by capillary pinching, and the second is that of the 
Taylor mode by interfacial shear and pressure fluctuations. The theory is not yet 
fully substantiated by experiments. The present theory predicts that the growth rate 
of disturbances in the Rayleigh mode increases significantly with the Weber number 
as it ahould, since the instability is due to capillary pinching. Unfortunately, the 
known experiments in the Rayleigh mode regime failed to record the values of 
relevant parameters including We for each experimental point. Only the ranges of 
velocity, temperature, and jet diameter were reported. Thus only the ranges of the 
parameters encountered in experiments can be estimated. This deprives us of a more 
complete comparison. Consequently the apparent agreement between experiments 
and the present theory with We = 0.0013 and Re = 3000, and with the Rayleigh 
theory remain fortuitous. This value of We and the values of the rest of parameters 
used in figure 7 are in the lower end of the parameter range estimated from the 
reported experimental data. It is possible that most of the experimental points were 
obtained in the lower range of the parameters encountered in experiments. The 
theoretical results on the Taylor mode are only qualitatively substantiated by the 
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experiments of Reitz & Bracco (1982). The average diameters of their atomized 
droplets all seem to scale with the capillary length, as predicted by our theory. 
Careful measurements of (w,., wi ,  k) for various given sets (We,Re, &,N,  1 )  are required 
for a better comparison with the theory for both modes. There may exist other modes 
of instability in the parameter ranges not considered in this work. A possible third 
mode which may correspond to a dripping jet (cf. Lin & Lian 1989) is yet to be 
explored by considering the convective and absolute instabilities of spatially growing 
disturbances when We B &. The known analysis of absolute and convective 
instabilities of a jet all ignore the effect of gas viscosity (Leib & Goldstein 1986a, b ;  
Lin & Lian 1989). Blennerhassett (1980) showed that Tollmien-Schlichting waves 
are more stable than the interfacial waves in two superposed viscous fluids flowing 
over a plane. The same situation appears to happen here. The Tollmien-Schlichting 
wave will probably not appear until Re is raised to a value much greater than those 
considered in this work. 

While the present analysis also applies to the case of N > 1, the computation for 
this case has not yet been carried out. The extension of the present analysis to the 
case of non-axisymmetric disturbances is quite straightforward. The nonlinear 
stability analysis of the linearly unstable disturbances described in this work will be 
useful for many industrial processes which utilize the mechanisms of the jet breakup 
either in Taylor’s atomization mode or Rayleigh’s ink-jet mode. 

This work was supported in part by grant no. DAAL03-89-K-0179 of ARO, grant 
no. MSM-8817372 of NSF and a New York State Science Foundation Grant. The 
computation was carried out with the computer facility at Clarkson University and 
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